
Gentleman:
A Light-weight Web-based Projectional Editor Generator

Louis-Edouard Lafontant
Université of Montréal
Montreal, Canada

louis.edouard.lafontant@umontreal.ca

Eugene Syriani
Université of Montréal
Montreal, Canada

syriani@iro.umontreal.ca

ABSTRACT
In the activity of software development and modeling, users should
benefit from asmuch freedom as possible to express themselves, and
this characteristic also extends to the tools they use. In recent years,
projectional editors have proven to be a valid approach to obtain
such capabilities by enabling language extension and composition
and various notations. However, current solutions are heavyweight,
platform-specific, and suffer from poor usability. To better support
this paradigm and minimize the risk of arbitrary and accidental
constraints in expressivity, we introduce Gentleman, a lightweight
web-based projectional editor generator. Gentleman allows the user
to define a model and projections for its concepts, and use the
generated editor to create the model instances. We demonstrate
how to define a projectional editor for Mindmapmodeling, covering
model definition, text and table projection, multi-projection, and
styling to showcase its main features.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Graphical user interface languages; Interface definition languages.

KEYWORDS
Projectional editing, model-driven engineering, language work-
bench
ACM Reference Format:
Louis-Edouard Lafontant and Eugene Syriani. 2020. Gentleman: A Light-
weight Web-based Projectional Editor Generator. In Proceedings of the 23rd 
ACM/IEEE International Conference on Model Driven Engineering Languages 
and Systems: Companion Proceedings, October 16–23, 2020. ACM, New York, 
NY, USA, 5 pages. https://doi.org/10.1145/3417990.3421998

1 INTRODUCTION
The practice of model-driven engineering (MDE) relies heavily on
the use of models and domain-specific languages (DSL) [23] which
offer, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem
domain [21]. Over the years, many tools have been created to sup-
port this activity, giving birth to a new category of tools labeled
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
MODELS '20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-8135-2/20/10.
https://doi.org/10.1145/3417990.3421998

as language workbench [7]. They support the efficient definition,
reuse, and composition of languages and their IDEs [6]. However,
the current state of tooling has some limitations that slow down
the adoption of MDE and its derived paradigms [11, 24]. Many
challenges revolve around the modeling languages [20] and the
tools used in the process such as modeling editors. We identify
two limitations of modeling editors: (1) the level of expressivity
and flexibility induced by the tool and (2) a deficiency in terms
of usability, making their usage difficult for domain experts and
practitioners alike.

Language workbenches offer a model editor that enables users
to manipulate their models using the syntax of the DSL. Most
editors are parser-based and can be classified into two categories.
On the one hand, Free-form editors are typically used for textual
DSL, like Xtext [4] and Spoofax [13]. On the other hand, syntax-
directed editors are typically for graphical DSLs, like MetaEdit+
[17] and AToMPM [19]. The difference between the two lies in their
parsing technique as they both rely on a parser to build an abstract
syntax tree (AST) with the given input and validate the syntax. A
projectional editor, however, does not rely on parsers. As a user edits
a program, the AST is modified directly. Projection rules are used
to create a representation of the AST with which the user interacts,
reflecting the resulting changes [22]. Without a parser, it enables
the support of notations that cannot be easily parsed, such as tables
or mathematical formulas, and the composition of any language
without introducing syntactic ambiguities. As demonstrated in [3],
this is much harder to achieve with parser-based tools. The most
promising projectional editor in the MDE community is currently
Jetbrains MPS [5]. However, it is a heavy-weight editor that cannot
be easily integrated in other tools.

In this paper, we present Gentleman, a lightweight web-based
projectional editor generator, which aims to close the gap between
models and domain experts. Gentleman allows the user to define a
model and projections for its concepts, and use the generated editor
to create the model instances. We demonstrate how to define a pro-
jectional editor for Mindmap modeling, covering model definition,
text and table projection, multi-projection, and styling to showcase
its main features. The tool demonstration is available online1.

2 OVERVIEW OF GENTLEMAN
Given the metamodel of a DSL and projections associated with its
elements, Gentleman generates a modeling editor tailored to the
DSL. It is a lightweight web solution, a much-requested feature
according to [2], and thus no installation is required. The editor
comes with very little restriction and can be adapted to various

1https://youtu.be/rPYouGPThKY

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://youtu.be/rPYouGPThKY


MODELS ’20 Tools & Demonstrations, October 16–23, 2020, Virtual Louis-Edouard Lafontant and Eugene Syriani

title : string

Mindmap

symbol : string

Marker

name : string

Topic

description : string

CentralTopic

MainTopic

SubTopic

subsubtopics

0..*

subtopics 0..*

topic1

markers

0..*

maintopics

0..*

marker 0..1

Figure 1: Mind map metamodel

HTML/CSS layouts and integrated into any web application. Gentle-
man relies on two main elements: concepts and projections define
the metamodel and the concrete syntax of a DSL, respectively. The
meta-languages used to define concepts and projections have been
specified using Gentleman itself, making the editor bootstrapped.
For convenience, the tool can import a metamodel, as an Ecore
model, to automatically generate the concepts.

In the remainder of the paper, we will use a DSL for modeling
Mindmaps as a running example. The metamodel is presented in
Figure 1. A mind map is a structure used to organize information
(topics) linked to and arranged around a central topic. The meta-
model depicts a tree-like organization of main topics and sub-topics.
Any topic can be assigned a marker.

2.1 Concepts
In Gentleman, the language engineer defines his DSL concepts using
a collection of structures called concept. Conversely, a concept can
be considered as the semantics of a projection. A collection of con-
cepts and their relations are aggregated into amodel. In Gentleman,
we distinguish between four types of concepts: primitive, concrete,
prototype, or derivative concepts. Attributes are used to associate
concepts and can be encapsulated into components. Gentleman con-
cepts borrow notions from object-oriented, prototype-based, and
functional paradigms. For example, if the metamodel is defined
by means of a class diagram, classes would be represented as con-
cepts. To facilitate the creation of models, the language engineer
can import any metamodel defined with Ecore into Gentleman.
Table 1 outlines what some Ecore elements correspond to in terms
of Gentleman concepts.

Ecore Gentleman

EPackage Model
EClass (abstract or interface) Prototype Concept

EClass Concrete Concept
EEnum Derivative

EAttribute Attribute
EReference (containment) Component

EReference Attribute

Table 1: Mapping between Ecore and Gentleman concepts

2.1.1 Attributes. The attribute of a concept (parent) describes its
relationship with another concept (target); it is identified by a
name (unique within the concept). An attribute may also possess a

description and an alias that could be used to refer to the targeted
concept. In this relationship, the target concept may be parameter-
ized with constraints and augmented with additional properties to
fit its parent concept usage. An attribute may be optional, meaning
that an instance of the parent concept would be valid without a
relation to the target concept. Every attribute declared inside a
class or an association end in class diagrams are represented by
concept attributes in Gentelman. In the Mindmap example, the
attribute title and marker are declared as attributes of the concepts
Mindmap and Topic respectively. The target concept of marker is the
concrete concept Marker. In contrast, the target concept of title is
the primitive concept String.

2.1.2 Components. The component of a concept (parent) is a group
of related attributes extrinsic to the parent. They are not perceived
as inherent to the concept itself and act as inner concepts visible
only to its parent. This is similar to the notion of inner classes
in object-oriented languages. Just as an attribute, a component is
identified with a name, has an optional description, and an optional
alias. For example, in Mindmaps, subtopics are components of a
main topic because they are not intrinsic.

2.1.3 Primitive concepts. They are self-defined concepts and, there-
fore, not related to any other concepts: they have no attributes and
thus no components. For better model integration, primitives are
accessible globally to any model. Every concept can be resolved
to a composition of primitives. Gentleman offers some predefined
primitive concepts, like String, Number, Boolean, Set (collection of
elements), and Reference (pointer to another concept). They con-
tain specific properties on which constraints may be applied when
defining an attribute to restrict the concept. For example, the string
primitive of the symbol attribute has a constraint that it must be of
length two. The language engineer can also define operations that
may be used with instances of primitives, such as a text transfor-
mation with a string or arithmetic with numbers.

2.1.4 Concrete concepts. They represent the core concepts of the
model and unlike primitives, they are specific to a model. Examples
of such concept are CentralTopic, MainTopic, and SubTopic.

2.1.5 Prototype concepts. A prototype creates a base skeleton to
provide reusability and extension to concepts of the model, sim-
ilar to prototype-based programming. Any concept can reuse a
prototype and would inherit its structure. Prototypes follow the
Liskov substitution principle. If the target of an attribute, then any
concept reusing it can also be the target. In this case, any property
or constraint defined on the attribute or component would still
hold. In Mindmaps, Topic is a suitable candidate for a prototype.

2.1.6 Derivative concepts. A derivative is a concept derived from
another one (base). Every value that can be captured by a derivative
must also be valid for its base concept. When the base is a primitive,
it can serve as a form of specialization. For example, an enumer-
ation would be translated into a derivative. In Mindmap, Marker
can be represented as a derivative of String, restricting the list of
accepted values. When the base is a concrete concept, the derivative
could be used to define computed properties. For example, suppose
CentralTopic is derived from Mindmap. Then, the title attribute of



Gentleman MODELS ’20 Tools & Demonstrations, October 16–23, 2020, Virtual

the latter could be the concatenation of the name attribute of the
former prefixed with ‘MM_’.

2.2 Projections
A projection is a representation of a concept that can be visualized
and interacted with in the graphical user interface (GUI). It can be
applied to any part of a concept, such as the concept as a whole or
an attribute. Note that the language engineer may define multiple
projections for a concept. By doing so, we can obtain the right
combination of visuals in any given situation. Gentleman offers
predefined layouts found in modern GUI technologies [14]. It also
provides data-specific controls in the form of fields, providing more
structure to help users quickly scan and comprehend the informa-
tion presented [12]. Both layouts and field can be customized with a
style. At the moment, Gentleman only supports relative and tabular
positioning with limited support for graphical elements. It does not
provide the means to arbitrarily position elements, that would be
possible with the use of HTML canvas, for example.

2.2.1 Layout. A layout is concerned with the structure of a projec-
tion. It organizes elements presented in the GUI by indicating the
location of its child elements. Gentleman defines layouts similar to
those found in popular GUI frameworks such as Xamarin [10], SWT
[9], and WPF [15]. For instance, the StackLayout piles elements hor-
izontally or vertically, the WrapLayout group its elements in a block,
and the TableLayout arranges them in a row or column-directed
table. Every layout presents a container that can be configured to
be collapsible, draggable, or resizable.

A layout child elements can be a text content, a layout, or a field.
In the Mindmap instance presented in Figure 2, the organization
of the elements is structured using the StackLayout to order them
vertically. We use the WrapLayout to group them together, such as
the heading Mind Map <title="Planning">. Each layout is further
enriched with styling rules like color, border, and spacing values.

2.2.2 Field. A field is concerned with manipulating the value of
a concept; thus, it enables data input and output. It provides an
abstraction for the underlying widget (control element) to promote
reusability and portability. Gentleman uses a modular approach
to select the right widget for the intent of the user. For instance,
it selects a Textarea if the user intends to write text on multiple
line or a single-line Textbox otherwise. Gentleman offers fields
that cover the most fundamental widget components in GUIs [8].
Among others, a TextField allows the user to input characters for
a String or Number. A BinaryField enables the user to alternate
between two states of a concept value, such as for a Boolean. A
LinkField allows the user to refer to another concept and bind
its projection for a Reference. A ChoiceField enables the user to
select one item in a predefined list for a Prototype. Each field offers
specific customizations, such as the projection of each choice in a
ChoiceField or the visual delimitation between items of a ListField.
More advanced fields, like a TableField allow the user tomanipulate
structured data and provide the ability to add, remove, sort, and
filter data. Fields also have generic properties to specify, for example,
if they are read-only, disabled, or hidden.

In the Mindmap instance presented in Figure 2, the title, name
and description attributes all target a String concept and, therefore,

Figure 2: Instance of a Mindmap in Gentleman

are rendered as TextFields. The marker added to the main topics
are LinkFields, referencing the declared markers in the header.
The main topics and subtopics are rendered as ListFields stacked
horizontally. Additional main topics can be added to the central
topic with the Add control action. Note how we customized this
action field to display a template of the main topic structure.

2.2.3 Style. Any projection can be complemented with style rules
to describe its presentation. Styles can be defined directly in the
Gentleman editor or imported and applied to a layout, text container,
or field. For example, users can set the font, color, and alignment of
text and the border of a table. To avoid repetition and encourage
better integration, Gentleman leverages the browser technologies,
offering full support for CSS class selectors. Layouts and fields also
expose class selectors for their HTML elements. This enables the
language engineer to declare global styles through CSS and specific
context-based rules in Gentleman. Note that images can be added
through the background property offered in CSS and Gentleman.

3 INTERACTINGWITH THE EDITOR
Gentleman is designed to be lightweight and thus uses a minimalist
approach to avoid any extraneous content that would otherwise
distract and slow-down the user. The base editor only comes with
a single toolbar with a button to close the editor and a status bar.
Additional buttons can be added in the configuration of the editor.



MODELS ’20 Tools & Demonstrations, October 16–23, 2020, Virtual Louis-Edouard Lafontant and Eugene Syriani

Figure 3: Projectional editor to create a model in Gentleman

3.1 Usage scenarios
We distinguish three usage scenarios of Gentleman: (1) definition,
(2) edition, and (3) reading. In (1), the user defines the concepts
of a model and the projections as presented in Section 2. In this
scenario, the target user is a language engineer or GUI designer
involved in the DSL definition. For greater flexibility and reuse, he
defines projections separately from concepts, thus providing good
separation of concern. This is especially the case when the concepts
are defined in an Ecore metamodel. In (2), the user creates or edits
an instance of the DSL. The editor presents editable fields to add
values to the AST of the model. Figure 3 shows a snapshot in this
scenario. The purpose of (3) is to simplify the projection for users
to read the model rather than edit it. It is a special case of (2) where
fields are made read-only and interactive actions are disabled. For
example, widgets to add, remove components, and empty optional
attributes are not displayed. The target users of (2) and (3) are the
domain experts of the DSL. To give users more flexibility during the
editing activity, they can spawn as many editors as needed. This
way, they can edit different concepts each in a dedicated space or
use different projections simultaneously. The editors are juxtaposed
next to each other and can be positioned as the user wants.

3.2 Tagging
Users can attach a note to any part of the content of the editor. It is
not stored as part of the AST of the projection but as part of the
editor. Notes can be tagged in the form of anchors. Users can search
for tags to quickly navigate to specific locations of the model. One
use of notes is to add comments on a model.

3.3 Storage
Import and export allow the user to preserve the current state of
the model and editor or load a saved one. The storage medium is a
JSON object representing the AST of the model and the projection
configuration of each concept. It also stores configurations specific
to the editor, like the toolbar configuration and comments. Recall
that Gentleman is bootstrapped; therefore, it treats any instance
being edited like a model. Internally, Gentleman does not distin-
guish between a model definition (a.k.a. metamodel), a projection
definition (a.k.a. concrete syntax), or an instance. The export stores
a reference to each concept and each projection. It is also possible
to save the model in plain text with no formatting or projection by
using the print functionnality.

3.4 Editor generation
When the language engineer has defined a model and at least one
projection for each concept, he can automatically synthesize a pro-
jectional editor for his DSL. One attractive feature of Gentleman
is its ability to preview a projection during the editing process.
This allows the designer to view the presentation of the projection
associated with the concept and how it integrates with other pro-
jections. It is also possible to edit the previewed projection to see
how the design responds to different values entered and improve
the user experience.

3.5 Context assistance
When the user interacts with a specific projection, a context in the
status bar indicates the name and location of the current concept
in terms of the structure of the model. At the top of Figure 2, we
see that the currently active field corresponds to the name of a
concret concept. The user can navigate through the model using
the TAB key or mouse click. As a projectional editor, he can only
modify editable projections. For example, in Figure 2, the user
cannot remove the central topic; he can only set its name value or
add/remove markers. During the interaction with a field, the user
may request the accepted values that can be assigned to the field by
hitting the common CTRL+Space key combination. The response
depends on the state of the field and its concept: it pops a dialog
showing information or a list of choices if an action is required. In
Mindmaps, the marker attached to a main topic must have been
defined as a central topic component. Therefore, at the level of the
main topic, the context assistance lists the marker values defined
at the central topic level. Requesting context assistance for the
name of the main topic displays the attribute’s meta-information,
including constraints if they were set.

3.6 Model validation and feedback
After the user edits a field, an orange, red, or green badge is dis-
played next to it. They indicate that a value was modified since it
was last in focus, that a constraint of the concept is violated, or
that it is valid, respectively. In Figure 3 a green badge is displayed
over the text field to indicate that the value entered is valid. When
a constraint is not satisfied (e.g., the value is not unique), an addi-
tional description is fed back to the user, in the form of a dialog if it
is purely informational or a choice dialog if further actions can be
taken. As explained in Section 1, the model is always structurally



Gentleman MODELS ’20 Tools & Demonstrations, October 16–23, 2020, Virtual

valid. However, the DSL may have semantical constraints, such as
a maximum depth of sub-sub topics. Gentleman supports reporting
semantical constraints violations through its API.

4 IMPLEMENTATION
Gentleman targets the web as its running platform and is imple-
mented entirely in Javascript. The application runs client-side,
enabling offline work. As with any web application, HTML and
CSS are used to describe the content and its presentation. The
tool can be easily integrated into any web page with the Gen-
tleman script loaded in it. This can be achieved in one of two
ways. The developer can decorate an HTML Tag with the attribute
data-gentleman, such as <div data-gentleman></div>. Upon load-
ing, every HTML element on the page found with this attribute
will have a Gentleman instance attached to it with the editor ren-
dered inside. Alternatively, the developer can create a Gentleman
instance dynamically in Javascript using the instruction editor =

Environment.createEditor() followed by editor.render() to ren-
der the editor on the page. This enables a web-based language
workbench (like AToMPM or WebGME) to have multiple projec-
tional editors within a single modeling editor. This is useful, for
instance, to control and stylize the edition of attributes. Gentleman
is an open-source project available on GitHub2.

5 RELATEDWORK
Projectional editors have been implemented in a few language
workbenches. Modern solutions include as Jetbrains MPS [5], the
Whole Platform [18], and the discontinued projects Intentional Pro-
gramming [16] and Más [1]. One of the most attractive features
of Gentleman is that it is a web solution. This opens the editor to
a wider audience as it is not specific to any platform: any device
equipped with a web browser can use it. Màs took a similar ap-
proach, but none of the current solutions targets the web. They are
limited to machines running their targeted operation system for
which they build specific packages.

Current language workbenches offer very little integration with
other tools and require every artifact to be created inside the tool.
For example, MPS can only integrate, via plugin manipulations,
with Jetbrains. Similarly, the Whole Platform is built as an Eclipse
instance making it possible to create bridges between Eclipse plu-
gins. Gentleman is designed with integration in mind, seamlessly
done with web applications, and also offers a bridge to the Eclipse
Modeling Framework.

Current projectional editors try to redefine well understood
design notions, creating an additional cognitive barrier for their
users. MPS, for instance, defines the visuals and their interaction
by using what they call Editor and Cell which can be configured
to act as a container, field, link or list; thus redefining the very
semantic of what a cell is and how a design expert expects to use a
cell. In contrast, Gentleman uses the same language found in design
such as layout and field which are further classified for specific use.
Furthermore, web designers can rely on their existing knowledge
to customize projections in Gentleman.

2https://github.com/geodes-sms/gentleman

6 CONCLUSION
We presented the central notions of the projectional editor, Gen-
tleman. The editor offers a rich GUI enabled by standard layouts
and fields, and projections that can be applied to any part of the
DSL concepts. Ultimately, our goal is to integrate Gentleman in
full-fledged language workbenches to offer a more adapted user
experience to domain users. Gentleman is an ongoing project with
a roadmap filled with more novelties. We would like to integrate
a model explorer, investigate proper undo/redo functionalities for
projectional editors, and enable collaborative modeling. We are also
working on providing a standard API based on the language server
protocol to ease the integration with language workbenches.

REFERENCES
[1] [n.d.]. http://mas-wb.appspot.com/.
[2] L. Agner and T. Lethbridge. 2017. A survey of tool use in modeling education. In

Model Driven Engineering Languages and Systems. IEEE, 303–311.
[3] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund. 2016. Efficiency

of projectional editing: A controlled experiment. In International Symposium on
Foundations of Software Engineering. 763–774.

[4] L. Bettini. 2016. Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd.

[5] F. Campagne. 2016. The MPS Language Workbench Volume I: The Meta Program-
ming System (3rd ed.). CreateSpace Independent Publishing Platform.

[6] S. Erdweg, T. Van Der Storm, M. Völter, et al. 2013. The state of the art in language
workbenches. In International Conference on Software Language Engineering.
Springer, 197–217.

[7] M. Fowler. 2005. Language workbenches: The killer-app for domain specific
languages. https://martinfowler.com/articles/languageWorkbench.html.

[8] V. Gupta. 2008. UI Programming: Handling events and using advanced widgets.
Accelerated GWT: Building Enterprise Google Web Toolkit Applications (2008),
105–134.

[9] R. Harris and R. Warner. 2004. The definitive guide to SWT and JFace. Apress.
[10] D. Hermes. 2015. Xamarin Mobile Application Development: Cross-Platform C#

and Xamarin. Forms Fundamentals. Apress.
[11] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. 2011. Empirical as-

sessment of MDE in industry. In International Conference on Software Engineering.
ACM, 471–480.

[12] J. Johnson. 2013. Designing with the mind in mind: simple guide to understanding
user interface design guidelines. Elsevier.

[13] L. C. Kats and E. Visser. 2010. The Spoofax language workbench: rules for
declarative specification of languages and IDEs. In Object oriented programming
systems languages and applications. 444–463.

[14] Ó. S. Ramón, J. S. Cuadrado, and J. G. Molina. 2014. Model-driven reverse
engineering of legacy graphical user interfaces. Automated Software Engineering
21 (2014), 147–186.

[15] C. Sells and I. Griffiths. 2007. Programming WPF: Building Windows UI with
Windows Presentation Foundation. O’Reilly Media, Inc.

[16] .C Simonyi, M. Christerson, and S. Clifford. 2006. Intentional Software. In Object-
Oriented Programming Systems, Languages, and Applications. ACM, 451–464.

[17] K. Smolander, K. Lyytinen, V-P. Tahvanainen, and P. Marttiin. 1991. MetaEdit
– a flexible graphical environment for methodology modelling. In International
Conference on Advanced Information Systems Engineering. Springer, 168–193.

[18] R. Solmi. 2005. Whole Platform. Ph.D. thesis. Universitá di Bologna e Padova.
[19] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H.

Ergin. 2013. AToMPM: A Web-based Modeling Environment. In MODELS’13
Invited Talks, Demonstration Session, Poster Session, and ACM Student Research
Competition, Vol. 1115. CEUR-WS.org, 21–25.

[20] R. Van Der Straeten, T. Mens, and S. Van Baelen. 2008. Challenges in model-
driven software engineering. InModel Driven Engineering Languages and Systems.
Springer, 35–47.

[21] A. Van Deursen, P. Klint, and J. Visser. 2000. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices 35, 6 (2000), 26–36.

[22] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. 2014. Towards user-friendly
projectional editors. In International Conference on Software Language Engineering
(LNCS, Vol. 8706). Springer, 41–61.

[23] J. Whittle, J. Hutchinson, and M. Rouncefield. 2013. The state of practice in
model-driven engineering. IEEE software 31, 3 (2013), 79–85.

[24] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal. 2013. Indus-
trial adoption of model-driven engineering: Are the tools really the problem?.
In Model Driven Engineering Languages and Systems (LNCS, Vol. 8107). Springer,
1–17.

https://github.com/geodes-sms/gentleman
https://martinfowler.com/articles/languageWorkbench.html

	Abstract
	1 Introduction
	2 Overview of Gentleman
	2.1 Concepts
	2.2 Projections

	3 Interacting with the editor
	3.1 Usage scenarios
	3.2 Tagging
	3.3 Storage
	3.4 Editor generation
	3.5 Context assistance
	3.6 Model validation and feedback

	4 Implementation
	5 Related work
	6 Conclusion
	References

